
Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

179

Accessing hared Resources: CREW

13 Accessing Shared
Resources: CREW

Shared resource management is commonly used to access large amounts of data by many users;

• the shared resource concept is defined
• concurrent read exclusive write is explained
• a simple example is developed demonstrating the concept

This chapter describes techniques that were developed for, and are used most often in shared memory
multi-processing systems. In such systems great care has to be taken to ensure that processes running on
the same processor do not access an area of shared memory in an uncontrolled manner. Up to now the
solutions have simply ignored this problem because all data has been local to and encapsulated within
a process. One process has communicated data to another as required by the needs of the solution. The
process and channel mechanisms have implicitly provided two capabilities, namely synchronisation
between processes and mutual exclusion of data areas. In shared memory environments the programmer
has to be fully aware of both these aspects to ensure that neither is violated.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

180

Accessing hared Resources: CREW

Mutual exclusion ensures that while one process is accessing a piece of shared data no other process
will be allowed access regardless of the interleaving of the processes on the processor. Synchronisation
ensures that processes gain access to such shared data areas in a manner that enables them to undertake
useful work. The simplest solution to both these problems is to use a pattern named CREW, Concurrent
Read Exclusive Write, which, as its names suggests, allows any number of reader processes to access
a piece of shared data at the same time but only one writer process to access the same piece of data
at one time. The CREW mechanism manages this requirement and in sensible implementations also
imposes some concept of fairness. If access is by multiple instances of reader and writer processes then
one could envisage a situation where the readers could exclude writers and vice versa and this should
be ameliorated as far as is possible. The JCSP implementation of a CREW does exhibit this capability of
fairness, as shall be demonstrated.

At the simplest level the CREW has to be able to protect accesses to the shared data and the easiest
way of doing this is to surround each access, be it a read or write with a call to a method that allows
the start of an operation and subsequently when the operation is finished to indicate that it has ended.
Between such pairs of method calls the operation of the CREW is guaranteed. Thus the programmer
has to surround access to shared data with the required start and end method calls be they a read or
write to the shared data. It is up to the programmer to ensure that all such accesses to the shared data
are suitably protected.

In the JCSP implementation of CREW we extend an existing storage collection with a Crew class.
Then we ensure that each access that puts data into the collection is surrounded by a startWrite()
and endWrite() pair of method calls on the Crew. Similarly, that each get access is surrounded by a
startRead() and endRead() method call. Internally, the Crew then ensures that access to the shared
storage collection is undertaken in accordance with the required behaviour. Further, fairness can be
implemented quite simply by ensuring that if the shared data is currently being accessed by one or more
reader processes then as soon as a writer process indicates that it wishes to put some data into the shared
collection then no further reader processes are permitted to start reading until the write has finished.
Similarly, a sequence of write processes, each of which requires exclusive access, will be interposed by
reader process accesses as necessary.

13.1 CrewMap

Listing 13-1 shows a simple extension of a HashMap {10} by means of an instance of a Crew {12}. The
put and get methods of HashMap are then overwritten with new versions that surround them with
the appropriate start and end method calls {15, 17} and {21, 24}, between which the normal HashMap’s
get and put methods can be called as usual.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

181

Accessing hared Resources: CREW

10 class CrewMap extends HashMap<Object, Object> {
11
12 def theCrew = new Crew()
13
14 def Object put (Object itsKey, Object itsValue) {
15 theCrew.startWrite()
16 super.put (itsKey, itsValue)
17 theCrew.endWrite()
18 }
19
20 def Object get (Object itsKey) {
21 theCrew.startRead()
22 def result = super.get (itsKey)
23 theCrew.endRead()
24 return result
25 }
26
27 }

Listing 13-1 The CrewMap Class Definition

At this point a word of caution has to be given. This arises because Java allows exceptions to be thrown
at any point. Thus in the above formulation it might be possible for the lines that represent normal
access to the shared resource {16, 22} to fail. In such a case the call to the end synchronisation method
{17, 23} will never happen and thus the Crew will fail in due course as the required locks will not be
released. The associated documentation for JCSP Crew discusses this in more detail. The solution is to
encapsulate the access in a try .. catch .. finally block. The problem arises because Java invokes
code sequences that are not part of the coding sequence and thus the programmer has to be very wary
of these possibilities. In the following description we shall presume that all access is well behaved and
such a fault will not occur.

Once the CrewMap has been defined it can be used in a solution that requires multiple processes access
to its shared data collection. Figure 13-1 shows such a typical application. In this case two Read and
two Write processes access the shared DataBase resource. The coding of the DataBase process is
shown in Listing 13-2.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

182

Accessing hared Resources: CREW

Figure 13-1 A Simple Use of CrewMap

13.2 The DataBase Process

The DataBase process has two channel list properties {12, 13} comprising the channels used by the
Read and Write processes to access it. Additionally, properties are required that define the number of
such Read and Write processes, readers and writers respectively {14, 15}.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

183

Accessing hared Resources: CREW

10 class DataBase implements CSProcess {
11
12 def ChannelInputList inChannels
13 def ChannelOutputList outChannels
14 def int readers
15 def int writers
16
17 void run () {
18 println "DataBase has started"
19 def crewDataBase = new CrewMap()
20 for (i in 0 ..< 10) {
21 crewDataBase.put (i, 100 + i)
22 }
23 for (i in 0 ..< 10) {
24 println "DB: Location $i contains ${crewDataBase.get(i)} "
25 }
26 def processList = []
27 for (i in 0..< readers) {
28 processList.putAt (i, new ReadClerk (cin: inChannels[i],
29 cout: outChannels[i],
30 data: crewDataBase))
31 }
32 for (i in 0 ..< writers) {
33 processList.putAt ((i + readers), new WriteClerk (cin:

inChannels[i + readers],
34 cout: outChannels[i + readers],
35 data: crewDataBase))
36 }
37 new PAR (processList).run()
38 }
39 }

Listing 13-2 The DataBase Process definition

The run method {17} essentially creates the structure shown in Figure 13-1. An instance of CrewMap
is defined called crewDataBase {19}. The shared resource crewDataBase is then populated with
initial values {20–22}, which initialises the first ten locations with the values 100 to 109 in sequence.
An empty processList {26} is then defined that will hold instances of the required ReadClerk and
WriteClerk processes. The required number of ReadClerk processes are then created {27–36} and
placed in processList. Each ReadClerk is allocated the corresponding element of the inChannels
and outChannels channel lists {28, 29}. Finally, the ReadClerk process has its data property initialised
to the crewDataBase itself {30}. The WriteClerk processes are instantiated in the same manner
{32–36} ensuring that the correct elements of the inChannels and outChannels lists are allocated to
the processes. This means that the all the ReadClerk and WriteClerk processes have shared access
to the crewDataBase. The processList can now be passed to a PAR for running {37}.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

184

Accessing hared Resources: CREW

Communication between the Read and Write processes and the DataBase is achieved by a single
class called DataObject {10}, see Listing 13-3. DataObject comprises three properties {12–14}, pid
hold the identity number of the accessing Read or Write process, location holds the index of the
resource element to be accessed and value is either the value read from that element or that is to be
written to the element.

10 class DataObject implements Serializable, JCSPCopy {
11
12 def int pid
13 def int location
14 def int value
15 }

Listing 13-3 The Definition of DataObject (Omitting Methods copy and toString)

It should be noted that this formulation of the DataBase contains no alternative (ALT) as might be
expected from previous examples. This arises because we are using a formulation that contains a CREW
that essentially provides the same functionality, but only for shared memory applications. The advantage
of the alternative is that it can be used to alternate over networked channels and thus is more flexible.
It also has the advantage of exposing the alternative concept that is so important in the modelling of
parallel systems.

13.3 The Read Clerk Process

Listing 13-4 shows the ReadClerk process, which has channel input and output properties cin {12}
and cout {13} respectively and a data property {14} that accesses the CREW resource.

10 class ReadClerk implements CSProcess {
11
12 def ChannelInput cin
13 def ChannelOutput cout
14 def CrewMap data
15
16 void run () {
17 println "ReadClerk has started "
18 while (true) {
19 def d = new DataObject()
20 d = cin.read()
21 d.value = data.get (d.location)
22 println "RC: Reader ${d.pid} has read ${d.value} from ${d.location}"
23 cout.write(d)
24 }
25 }
26 }

Listing 13-4 The ReadClerk Process

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

185

Accessing hared Resources: CREW

The run method {16-25} defines an instance d of type DataObject {19} after which the value of d is
read from cin {20}. The location property of d is then used to access the CrewMap property data
{21} to get the corresponding value which is then stored in the value property of d. The revised value
of d is then written to the channel cout {23}, after an appropriate message is printed.

13.4 The Write Clerk Process

The WriteClerk process is shown in Listing 13-5 and is fundamentally the same as that shown in the
ReadClerk process except that a new value is put into the shared resource {21}. The unmodified
DataObject d is written back to the corresponding Write process to confirm that the operation has
taken place {23}.

10 class WriteClerk implements CSProcess {
11
12 def ChannelInput cin
13 def ChannelOutput cout
14 def CrewMap data
15
16 void run () {
17 println "WriteClerk has started "
18 while (true) {
19 def d = new DataObject()
20 d = cin.read()

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

186

Accessing hared Resources: CREW

21 data.put (d.location, d.value)
22 println "WC: Writer ${d.pid} has written ${d.value} to ${d.location}"
23 cout.write(d)
24 }
25 }
26 }

Listing 13-5 The WriteClerk Process

Each of the Clerk processes behaves as a pure server. The server behaviour is guaranteed provided access
to the shared data resource always complete in finite time. This will happen provided no exception is
thrown and handled incorrectly in the shared data resource.

13.5 The Read Process

The Read process is shown in Listing 13-6. It has three properties. A channel by which it writes to the
database r2db {12} and one by which it reads returned values db2r {13}. The last property, id {14}, is
the identity number of the Read process. The channel toConsole {15} writes messages to an associated
GConsole process. The run method {17} initialises a DataObject with the Read process’ id {22}
and then reads a value from each location of the shared resource in sequence {20}, printing out each
returned value {25}. This is achieved by allocating the loop value i to the location property of d {22}.
The instance d is then written to the shared resource using the channel r2db {23}. The process then
waits until it can read the returned DataObject into d using the channel db2r {24}. This means that
the process behaves as a pure client.

10 class Read implements CSProcess {
11
12 def ChannelOutput r2db
13 def ChannelInput db2r
14 def int id
15 def ChannelOutput toConsole
16
17 void run () {
18 def timer = new CSTimer()
19 toConsole.write ("Reader $id has started \n")
20 for (i in 0 ..<10) {
21 def d = new DataObject(pid:id)
22 d.location = i
23 r2db.write(d)
24 d = db2r.read()
25 toConsole.write ("Location "d.location+" has value "+d.value + "\n")
26 timer.sleep(100)
27 }
28 toConsole.write ("Reader $id has finished \n")
29 }
30 }

Listing 13-6 The Read Process

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

187

Accessing hared Resources: CREW

13.6 The Write Process

The Write process is shown in Listing 13-7 and is very similar to the Read process except that the
elements of the shared resource are accessed in reverse order, that is from 9 to 0 {22}. The value written
to the shared resource is dependent upon the id of the writing process {24} and is sufficiently different
to make observation of the resulting behaviour easier.

10 class Write implements CSProcess {
11
12 def ChannelOutput w2db
13 def ChannelInput db2w
14 def int id
15 def ChannelOutput toConsole
16
17 void run () {
18 def timer = new CSTimer()
19 toConsole.write ("Writer $id has started \n")
20 for (j in 0 ..<10) {
21 def d = new DataObject(pid:id)
22 def i = 9 – j // write in reverse order
23 d.location = i
24 d.value = i + ((id+1)*1000)
25 w2db.write(d)
26 d = db2w.read()
27 toConsole.write ("Location "+d.location+" now contains "+d.value+"\n")
28 timer.sleep(100)
29 }
30 toConsole.write ("Writer $id has finished \n")
31 }
32 }

Listing 13-7 The Write Process

13.7 Creating the System

The script that invokes the DataBase system is shown in Listing 13-8.

10 def nReaders = Ask.Int ("Number of Readers ? ", 1, 5)
11 def nWriters = Ask.Int ("Number of Writers ? ", 1, 5)
12 def connections = nReaders + nWriters
13
14 def toDatabase = Channel.one2oneArray(connections)
15 def fromDatabase = Channel.one2oneArray(connections)
16 def consoleData = Channel.one2oneArray(connections)
17
18 def toDB = new ChannelInputList(toDatabase)
19 def fromDB = new ChannelOutputList(fromDatabase)
20

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

188

Accessing hared Resources: CREW

21 def readers = (0 ..< nReaders).collect { r ->
22 return new Read (id: r,
23 r2db: toDatabase[r].out(),
24 db2r: fromDatabase[r].in(),
25 toConsole: consoleData[r].out())
26 }
27
28 def writers = (0 ..<nWriters).collect { w ->
29 int wNo = w + nReaders
30 return new Write (id: w,
31 w2db: toDatabase[wNo].out(),
32 db2w: fromDatabase[wNo].in(),
33 toConsole: consoleData[wNo].

out())
34 }
35
36 def database = new DataBase (inChannels: toDB,
37 outChannels: fromDB,
38 readers: nReaders,
39 writers: nWriters)
40
41 def consoles = (0 ..< connections).collect { c ->
42 def frameString = c < nReaders ?
43 "Reader " + c :
44 "Writer " + (c – nReaders)
45 return new GConsole (toConsole: consoleData[c].in(),
46 frameLabel: frameString)
47 }
48 def procList = readers + writers + database + consoles
49
50 new PAR(procList).run()

Listing 13-8 The Script to Invoke the DataBase System

Initially, the number of Read and Write processes is obtained {10, 11} by a console interaction. The
total number of connections to the DataBase is then calculated as connections {12}. The system
uses a GConsole process for each Read and Write process to display the outcome of the interactions
with the DataBase. The channels used to connect the Read and Write processes to the Database and
the GConsoles are then defined {14–16}. The corresponding channel lists toDb and fromDb are then
defined {18, 19}, which connect the Read and Write processes to the DataBase.

The required number of Read processes is then created in the list readers {21–26}. Each instance uses
the closure property r to identify the required element of the previously declared channel arrays that
connect the process to the DataBase and its GConsole process. Similarly, the required number of Write
processes is defined {28–34}. The variable wNo {29} is used to ensure that the index used to associate
Write process channel indeces is offset by the number of Read processes.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

189

Accessing hared Resources: CREW

An instance of the DataBase process is then created {36–39}, using the previously declared channel lists.
The list consoles {41–47} contains the instances of GConsole required to connect to the Read and
Write processes. Finally, procList is created as the addition of all the process lists and the database
process {48} and then run {50}.

Outputs 13-1 and 13-2 show the output from the running of the system when it is started with two Read
and two Write processes. The order in which the Write process have been executed can be determined
from the values that have been read by the two Read processes. Recall that the Write processes access the
database locations in reverse order to the Read processes. The outputs indicate that the implementation
of the Crew class is inherently fair because the values read by the Read processes change from the initial
values to the modified values about half way through the cycle. The values read from locations 5 and 6
also vary indicating that state of the DataBase was in flux at that point in the access cycles with read
and write operations fully interleaved.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

190

Accessing hared Resources: CREW

Location 1 has value 101
Location 2 has value 102
Location 3 has value 103
Location 4 has value 104
Location 5 has value 105
Location 6 has value 1006
Location 7 has value 2007
Location 8 has value 2008
Location 9 has value 2009
Reader has finished

Output 13 – 1 Output From Read process 0

Location 1 has value 101
Location 2 has value 102
Location 3 has value 103
Location 4 has value 104
Location 5 has value 1005
Location 6 has value 2006
Location 7 has value 2007
Location 8 has value 2008
Location 9 has value 2009
Reader has finished

Output 13 – 2 Output From Read process 1

13.8 Summary

In this chapter we have investigated a typical mechanism used in shared memory multi-processing system.
The formulation tends to hide the interactions that take place because these are captured somewhat
remotely in the CrewMap class definition.

13.9 Challenge

Rewrite the system so that a Crew is not used and the DataBase process alternates over the input channels
from the Read and Write processes. The system should capture the same concept of fairness as exhibited
in the CREW based solution.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

191

Barriers and Buckets: Hand-Eye Co-ordination Test

14 Barriers and Buckets: Hand-Eye
Co-ordination Test

This chapter develops a solution to a highly dynamic system using a number of shared meory
synchronisation capabilities including:

• barrier
• alting barrier
• bucket
• channel data stores are used to overcome inconsistenices in the underlying Java user

interface model

Three shared memory synchronisation techniques are combined to provide control of a highly dynamic
environment. A Barrier provides a means whereby a known number of processes collectively control
their operation so they all wait at the barrier until all of them have synchronised with the barrier at which
time they are all released to run in parallel. An AltingBarrier is a specialisation of the Barrier
that allows it to act also as a guard in an Alternative (Welch, et al., 2010). Finally, a Bucket (Kerridge,
et al., 1999) provides a flexible refinement of a barrier. Typically, there will be a collection of Buckets
into which processes are placed depending upon some criterion. Another process then, subsequently,
causes a Bucket to flush all its processes so they are executed concurrently. These processes will in due
course, become idle, whereupon they place themselves in other buckets. The next Bucket in sequence
is then flushed and so the cycle is repeated. Buckets can be used to control discrete event simulations
in a very simple manner. The process that undertakes the flushing of the buckets must not be one of the
processes that can reside in a Bucket.

The aim of this example is to present a user with a randomly chosen set of targets that each appear for
a different random time. During the time the targets are available the user clicks the mouse over each
of the targets in an attempt to hit as many of the targets as possible. The display includes information
of how many targets have been hit and the total number of targets that have been displayed. The targets
are represented by different coloured squares on a black background and a hit target is coloured white.
A target that is not ‘hit’ before its self determined random time has elapsed is coloured grey. There is a
gap between the end of one set of targets and the display of the next set during which time the screen is
made all black. The minimum time for which a target is displayed is set by the user; obviously the longer
this time the easier it is to hit the targets. Targets will be available for a period between the shortest time
and twice that time. Figure 14-1 shows the screen, at the point when six targets have been displayed, and
none have yet been hit. The system has displayed a total of 88 targets of which 15 targets have been hit.
The minimum target delay was 900 milliseconds. It can be deduced there are 16 targets in a 4 × 4 matrix.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

192

Barriers and Buckets: Hand-Eye Co-ordination Test

The solution presumes that each target is managed by its own process and that it is these processes
that are held in a Bucket until it is the turn of that Bucket to be flushed. When a target is enabled it
displays itself until either it is ‘hit’ by a mouse-press, in which case it turns white, or the time for which
it appears elapses and it is coloured grey. It is obvious that each of these target processes will finish at
a different time and because the number of targets is not predetermined a barrier is used to establish
when all the enabled target processes have finished. After this, the target process determines into which
bucket it is going fall and thereby remains inactive until that bucket is flushed. The other processes used
in the solution are shown in Figure 14-2.

Figure 14-1 The Screen for the Hand-Eye Co-ordination Test

The system comprises a number of distinct phases each of which is controlled by its own barrier, which
depending on the context is either a simple Barrier or an AltingBarrier.

Figure 14-2 shows the system at the point where it is about to synchronise on the setUpBarrier.
During this setup phase there are no channel communications but the processes that synchronise on
setUpBarrier either have to initialise themselves in some manner or must not progress beyond a
certain point to ensure the system will not get out of step with itself. The setup phase only occurs once
when the system is initially executed. The processes that are not part of the setUpBarrier cannot
make any progress because they are dependent on other barriers or communications with processes that
synchronise on the setUpBarrier.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

193

Barriers and Buckets: Hand-Eye Co-ordination Test

The BarrierManager is a process that is used to manage phase synchronisations and as such will be
seen in subsequent figures to be part of a number of other barriers. For ease of description the structure
of each phase will show only the relevant barrier and channels that are operative at that time. The
separation into these distinct phases also makes it easier to analyse the system from the point of view
of its client-server architecture, thereby enabling deadlock and livelock analysis.

The TargetFlusher and TargetProcess processes are the only processes that can manipulate the
array of Buckets. The Buckets are not shown on the diagram. The TargetProcesses are able to
identify which Bucket they are going to enter when they stop running. TargetFlusher is the only
process that can cause the flush and subsequent execution of the processes contained with a Bucket.
The processing cycle of a TargetProcess is to wait until it is flushed from a Bucket; it then runs
until it determines, itself, that it has ceased to run at which point it causes itself to fallInto a Bucket,
which it also determines.

The DisplayController process initialises the display window to black. It also initialises, to zero, the
information contained in the display widow as to the number of hits that have occurred and the total
number of targets that have been displayed.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

194

Barriers and Buckets: Hand-Eye Co-ordination Test

Figure 14-2 System At Setup Barrier Synchronisation

Figure 14-3 shows the system at the initBarrier synchronisation, which is the point at which those
targets that are executing have initialised themselves and the associated display window is showing
the targets. Prior to the initBarrier the only process that can execute is TargetController. The
TargetController requests the TargetManager to flush the next Bucket; a request that is passed
onto the TargetFlusher process. The TargetFlusher accesses the Buckets in sequence until it
finds a non-empty one. It then initialises the initBarrier with the number of TargetProcesses.
It returns this number to the TargetManager and then flushes the TargetProcesses, which start
running. The TargetManager then determines which of the TargetProcesses has been started by
waiting for a communication from each of them informing it of the identity of the running targets. These
identities are then formed into a List, which is then communicated to both the TargetController
and DisplayController processes.

The TargetController can now construct a ChannelOutputList that will be subsequently used to
communicate the location where mouse presses occur to each of the TargetProcesses. Similarly, the
DisplayController can modify the display window to show the running targets.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

195

Barriers and Buckets: Hand-Eye Co-ordination Test

Figure 14-3 System At the Initialise Barrier Synchronisation

The MouseBufferPrompt and MouseBuffer have a design similar to that used previously in the
manipulation of a queue (Chapter 6.2) and event handling (Chapter 11.2). MouseBuffer only accepts a
request from MouseBufferPrompt when it has already received an event on its mouseEvent channel.
The Gallery process is responsible both for the ActiveCanvas upon which the targets are displayed
and the detection and communication of mouse click events. At this stage the MouseBufferPrompt
process has no channel on which it can output points but that is not required until the system progresses
to the next, goBarrier phase.

The goBarrier is simply required to ensure that all the running TargetProcesses, the
TargetController and DisplayController have reached a state whereby the system can start
execution from a known state. As such this phase does not require any channel communication as shown
in Figure 14-4. Once these processes have synchronised the system enters the normal running state of
the system with some of the TargetProcesses executing.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

196

Barriers and Buckets: Hand-Eye Co-ordination Test

Each of the Barriers used so far are of the simple variety because the number of processes that require
synchronising can be predetermined and there is no need for any of these Barriers to interact with
a possible communication or timer in an alternative. The communications are all required to have
completed before the processes can reach the synchronisation point. The remaining Barriers are of
the AltingBarrier variety because the requirement to synchronise can happen at the same time as a
timer alarm or communication occurs.

Figure 14-4 System At the Go Barrier Synchronisation

Figure 14-5 shows the system structure when the TargetProcesses are waiting for mouse clicks to
determine whether or not they have been hit. The figure also shows the client-server analysis appropriate
to this phase of the system’s operation.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

197

Barriers and Buckets: Hand-Eye Co-ordination Test

Initial, cursory inspection, would seem to suggest that there a client-server loop has been created.
However, it can be seen that the MouseBuffer is a pure server and therefore ensures that no loop is
formed. Furthermore, the Gallery process provides a user interface capability that has some unusual
properties. Any incoming communication is always fully acted upon within the process and is not
transmitted further. Thus for its inputs the Gallery acts as a pure server. For any mouse events that
it might generate, the Gallery acts as a pure client provided any event channels are communicated
by a channel that utilises an overwriting buffer. This requirement is expounded further in the JCSP
documentation and was discussed in Chapter 11.2.3.

The operation of a TargetProcess is specified as follows. After synchronising on the goBarrier
it calculates its own random alarm time, which then forms part of an alternative that comprises the
alarm and channel communications on its mousePoints channel. This alternative is looped around
until either the alarm time occurs or the target is hit. In either case the target is no longer active.
Another alternative is then entered that comprises communications on its mousePoints channel or the
timeAndHitBarrier. Even though a target is inactive other targets may still not yet have timed out and
thus mouse clicks will still be received. The timeAndHitBarrier determines when either all the targets
have been hit or they have all timed out or some combination of these situations has occurred. It also has
the effect of breaking the connection between TargetController and MouseBufferPrompt until
the next set of targets are initialised. To ensure this does not cause a problem the channel pointsToTC
uses an OverWriteOldestBuffer data store.

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

198

Barriers and Buckets: Hand-Eye Co-ordination Test

Figure 14-5 System Running Awaiting timeAndHitBarrier

When the state of a target changes (timed out or hit) it sends a communication to the
DisplayController accordingly, which can then update the display maintained by Gallery
appropriately. TargetController receives a java.awt.Point from MouseBufferPrompt that give
the coordinates where the mouse has been pressed. The TargetController then outputs this Point
value to each of the TargetProcesses in parallel using the ChannelOutputList mousePoints.
Once all the targets have either been hit or timed out the timeAndHitBarrier synchronises at which
point the TargetProcesses individually determine into which randomly chosen Bucket they are
going to fall.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

199

Barriers and Buckets: Hand-Eye Co-ordination Test

The system then moves on to the final phase of processing shown in Figure 14-6. The
DisplayController process contains an alternative with guards comprising the finalBarrier and
the channel targetStateToDC. Thus when it is offering the guard finalBarrier together with
BarrierManager the barrier synchronises and the system is able to progress onto another initial phase
as described previously. The only process to undertake any substantial processing in the final phase is
the DisplayController which leaves the final state of the display for a preset constant time, then
sets all the targets to black, thereby obliterating them and then waits for another preset constant time.
The coding of each of the processes now follows.

Figure 14-6 System At Final Barrier Synchronisation

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

200

Barriers and Buckets: Hand-Eye Co-ordination Test

14.1 Barrier Manager

The BarrierManager, shown in Listing 14-1, simply defines as properties all the barriers in which it
participates {12–15}. By definition an AltingBarrier must be part of an alternative and thus two ALTs
are defined {18, 19} in which the particular AltingBarrier is the only guard. BarrierManager then
waits to synchronise on setUpBarrier {20}. Thereafter, the process repeatedly synchronises on the
goBarrier, timeAndHitBarrier and finalBarrier in sequence {23–25}. A Barrier synchronises
using the sync() method call, whereas synchronisation on an AltingBarrier is achieved by calling
the select() method call of the ALT that contains the barrier as a guard. In this case because the
guard is the only element in the alternative a simple call of the select() method is sufficient, the
value returned is of no importance. An alting barrier becomes enabled when all other members of the
AltingBarrier also select() the same alting barrier.

10 class BarrierManager implements CSProcess{
11
12 def AltingBarrier timeAndHitBarrier
13 def AltingBarrier finalBarrier
14 def Barrier goBarrier
15 def Barrier setUpBarrier
16
17 void run() {
18 def timeHitAlt = new ALT ([timeAndHitBarrier])
19 def finalAlt = new ALT ([finalBarrier])
20 setUpBarrier.sync()
21
22 while (true){
23 goBarrier.sync()
24 def t = timeHitAlt.select()
25 def f = finalAlt.select()
26 }
27 }
28 }

Listing 14-1 Barrier Manager

14.2 Target Controller

Listing 14-2 shows the coding of the TargetController process, which is the process that effectively
controls the operation of the complete system. The properties of the process are defined {12–20} and
these directly implement the channel and barrier structures shown in Figures 14-2 to 14-6.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

201

Barriers and Buckets: Hand-Eye Co-ordination Test

10 class TargetController implements CSProcess {
11
12 def ChannelOutput getActiveTargets
13 def ChannelInput activatedTargets
14 def ChannelInput receivePoint
15 def ChannelOutputList sendPoint
16
17 def Barrier setUpBarrier
18 def Barrier goBarrier
19 def AltingBarrier timeAndHitBarrier
20 def int targets = 16
21
22 void run() {
23 def POINT = 1
24 def BARRIER = 0
25 def controllerAlt = new ALT ([timeAndHitBarrier, receivePoint])
26
27 setUpBarrier.sync()
28 while (true) {
29 getActiveTargets.write(1)
30 def activeTargets = activatedTargets.read()
31 def runningTargets = activeTargets.size
32 def ChannelOutputList sendList = []
33 for (t in activeTargets) sendList.append(sendPoint[t])
34 def active = true

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

202

Barriers and Buckets: Hand-Eye Co-ordination Test

35 goBarrier.sync()
36 while (active) {
37 switch (controllerAlt.priSelect()) {
38 case BARRIER:
39 active = false
40 break
41 case POINT:
42 def point = receivePoint.read()
43 sendList.write(point)
44 break
45 } // end switch
46 } // end while active
47 } // end while true
48 } // end run
49 }

Listing 14-2 Target Controller

Within the run method some constants used to identify guards are defined {23, 24} of an alternative {25}.
The zero’th guard of the alternative controllerAlt is the AltingBarrier timeAndHitBarrier
and as such is incorporated into an ALT like any other guard. The process then waits for all the other
enrolled processes to synchronise on setUpBarrier {27} before continuing with the unending loop
{28–47} that is the main body of the process.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

203

Barriers and Buckets: Hand-Eye Co-ordination Test

The first action of the process is to send a signal {29} to the TargetManager process using the channel
getActiveTargets. This is the first part of a client-server request and response pair of communications,
the second of which is the receipt of a list of the targetIds of the activeTargets from the channel
activatedTargets {30}. The activeTargets list is then used to create {33} a subset of the
ChannelOutputList property sendPoint {15} in another ChannelOutputList sendList, which
is used subsequently to communicate with each of the TargetProcesses. The Boolean property active is
then defined {34} and will be used to control the subsequent operation of the process. The process now waits
to synchronise on the goBarrier {35}. Prior to the goBarrier synchronisation all the TargetProcesses
will have synchronised on the initBarrier but that is of no concern to the TargetController process.

The goBarrier is used to synchronise the operation of all the targets in the running TargetProcesses, the
BarrierManager and the DisplayController as well as TargetController. The synchronisation
enables each of these processes to run in that part of the system which allows users to move their mouse
over the active targets and to try and hit each of them, by means of a mouse press, before each target times
out. Thus the only actions that can occur are either, a mouse press occurs, or all the targets have either
been hit or timed out. The mouse press manifests itself as the input of a Point on the receivePoint
channel {42}. The value of point is then communicated, in parallel {43}, to all the members of sendList
to each of the running TargetProcesses. (A write on a ChannelOutputList causes the writing of
the method call parameter to all the channels in the list in parallel). If the barrier guard is selected then
the loop terminates as soon as all the other processes on the timeAndHitBarrier have been selected
{38}. The value of active is set false {39}which causes the inner while loop to terminate {36} ready for
the process to cycle again round the outer non-terminating while loop {28}.

14.3 Target Manager

Listing 14-3 shows the coding of the TargetManager process. Its properties are defined {12–18}.
The process does not have anything to do prior to the setUpBarrier synchronisation {21}. Its body
comprises a non-terminating loop {22–34}. Initially, it reads the signal from TargetController
on its getActiveTargets channel {24}, which causes the writing of yet a further signal to the
TargetFlusher process on the flushNextBucket channel {25}. This is also the first part of the client-
server communication pattern between TargetManager and TargetFlusher. The corresponding
response is read from the targetsFlushed channel, which is the number of TargetProcesses that
have been initialised into the variable targetsRunning {26}. The next phase {27–30} is to read from each
of the initialised TargetProcesses their identity on the targetIdFromTarget channel and append
it to the targetList {28}. This list is then written to the TargetController process {31} using the
activatedTargets channel, thereby completing the client-server interaction between TargetManager
and TargetController. Finally, the list of initialised targets is written to the DisplayController
using the channel activatedTargetsToDC {32}. These two communications allow the receiving process
to complete their initialisation prior to further operation. The process then cycles waiting to read the next
group of actived targets {24}, which cannot be undertaken until the next bucket is flushed.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

204

Barriers and Buckets: Hand-Eye Co-ordination Test

10 class TargetManager implements CSProcess {
11
12 def ChannelInput targetIdFromTarget
13 def ChannelInput getActiveTargets
14 def ChannelOutput activatedTargets
15 def ChannelOutput activatedTargetsToDC
16 def ChannelInput targetsFlushed
17 def ChannelOutput flushNextBucket
18 def Barrier setUpBarrier
19
20 void run() {
21 setUpBarrier.sync()
22 while (true) {
23 def targetList = []
24 getActiveTargets.read()
25 flushNextBucket.write(1)
26 def targetsRunning = targetsFlushed.read()
27 while (targetsRunning > 0) {
28 targetList << targetIdFromTarget.read()
29 targetsRunning = targetsRunning – 1
30 } // end of while targetsRunning
31 activatedTargets.write(targetList)
32 activatedTargetsToDC.write(targetList)
33 } // end of while true
34 }
34 }

Listing 14-3 Target Manager

14.4 Target Flusher

The role of the TargetFlusher process, shown in Listing 14-4, is to manage the Buckets into which
the TargetProcesses fall.

10 class TargetFlusher implements CSProcess {
11
12 def buckets
13 def ChannelOutput targetsFlushed
14 def ChannelInput flushNextBucket
15 def Barrier initBarrier
16
17 void run() {
18 def nBuckets = buckets.size()
19 def currentBucket = 0
20 def targetsInBucket = 0
21 while (true) {
22 flushNextBucket.read()
23 targetsInBucket = buckets[currentBucket].holding()

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

205

Barriers and Buckets: Hand-Eye Co-ordination Test

24 while (targetsInBucket == 0) {
25 currentBucket = (currentBucket + 1) % nBuckets
26 targetsInBucket = buckets[currentBucket].holding()
27 } // end of while targetsInBucket
28 initBarrier.reset(targetsInBucket)
29 targetsFlushed.write(targetsInBucket)
30 buckets[currentBucket].flush()
31 currentBucket = (currentBucket + 1) % nBuckets
32 } // end of while true
33 }
34 }

Listing 14-4 Target Flusher

The process also completes the client-server interaction with the TargetManager process. Its properties
are defined {12–15}. Some variables are initialised {18–20} in the first part of the run method. The main
loop of the process {21–32} initially reads the signal {22} that causes it to start the initialisation of some
TargetProcesses. The number of TargetProcesses in the currentBucket is determined by means
of a call of the holding() method {23}. The next piece of coding {24–27} ensures that the number of
TargetProcesses that are flushed is greater then zero.

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

206

Barriers and Buckets: Hand-Eye Co-ordination Test

At this stage initBarrier can be set to the number of targetsInBucket {28} by means of a call to
the reset method. The number of targetsInBucket can now be written to the TargetManager
process {29}. Now the TargetProcesses contained in the currentBucket can be flushed {30} and
therefore start running. Finally, the value of currentBucket can be incremented subject to its value
staying within zero to the number of Buckets, nBuckets {31}.

14.5 Display Controller

The DisplayController process is shown in Listings 14-5 to 14-8 and manages the interaction
between the TargetProcesses and the user interface provided by the Gallery process, described in
the next section.

The TargetProcesses communicate with the DisplayController by means of the channel stateChange
{11}, which is the ‘one’ end of an any2one channel. The channel activeTargets {12} is used to input
the list of running targets during the initial phase of a cycle. The displayList property {14} provides
the connection between this process and the ActiveCanvas contained in the Gallery process.
The channels hitsToGallery and possiblesToGallery {15, 16} are used to send values to the
ActiveLabels in the Gallery process that display the number of targets that have been hit and the
total number of targets displayed. Finally, the barriers upon which DisplayController synchronises
are defined {18–20}.

10 class DisplayController implements CSProcess {
11 def ChannelInput stateChange
12 def ChannelInput activeTargets
13
14 def DisplayList displayList
15 def ChannelOutput hitsToGallery
16 def ChannelOutput possiblesToGallery
17
18 def Barrier setUpBarrier
19 def Barrier goBarrier
20 def AltingBarrier finalBarrier
21

Listing 14-5 Display Controller Properties

Listing 14-6 gives the array of GraphicsCommands and list of values used to change the displayList.
These are not shown complete, but are those parts that relate to the first and last. The array targetGraphics
is used to initially create the displayList. Each of the elements of the list targetColour comprises
the colour of the target and the element of targetGraphics that has to be changed in order to display
the target. The first two elements of targetGraphics {25, 26} have the effect of completely ‘blacking’ out
the display canvas prior to its repainting within the Canvas thread.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

207

Barriers and Buckets: Hand-Eye Co-ordination Test

22 void run() {
23
24 def GraphicsCommand [] targetGraphics = new GraphicsCommand [34]
25 targetGraphics[0] = new GraphicsCommand.SetColor (Color.BLACK)
26 targetGraphics[1] = new GraphicsCommand.FillRect (0, 0, 450, 450)
27 targetGraphics[2] = new GraphicsCommand.SetColor (Color.BLACK)
28 targetGraphics[3] = new GraphicsCommand.FillRect (10, 10, 100, 100)
29 targetGraphics[4] = new GraphicsCommand.SetColor (Color.BLACK)
30 targetGraphics[5] = new GraphicsCommand.FillRect (120, 10, 100, 100)
31 targetGraphics[6] = new GraphicsCommand.SetColor (Color.BLACK)
32 targetGraphics[7] = new GraphicsCommand.FillRect (230, 10, 100, 100)
33 …
34 targetGraphics[30] = new GraphicsCommand.SetColor (Color.BLACK)
35 targetGraphics[31] = new GraphicsCommand.FillRect (230, 340, 100, 100)
36 targetGraphics[32] = new GraphicsCommand.SetColor (Color.BLACK)
37 targetGraphics[33] = new GraphicsCommand.FillRect (340, 340, 100, 100)
38
39 def targetColour = [
40 [new GraphicsCommand.SetColor (Color.RED), 2],
41 [new GraphicsCommand.SetColor (Color.GREEN), 4],
42 [new GraphicsCommand.SetColor (Color.YELLOW), 6],
43 [new GraphicsCommand.SetColor (Color.BLUE), 8],
44 …
45 [new GraphicsCommand.SetColor (Color.MAGENTA), 30],
46 [new GraphicsCommand.SetColor (Color.ORANGE), 32]
47]

Listing 14-6 Graphics definitions

The run method has some further properties that are shown in Listing 14-7, which include the constants
{48, 49} used to identify the selected alternative defined as controllerAlt {52}. The constants {54–56}
define the GraphicsCommand that can be used to colour a square as indicated by their name. Finally,
variables that tally the number of hits and possible hits are defined {58, 59} together with a timer {60}
that is used to control the time the display stays static at the end of a cycle.

48 def CHANGE = 1
49 def BARRIER = 0
50 def TIMED_OUT = 0
51 def HIT = 1
52 def controllerAlt = new ALT ([finalBarrier, stateChange])
53
54 def whiteSquare = new GraphicsCommand.SetColor(Color.WHITE)
55 def blackSquare = new GraphicsCommand.SetColor(Color.BLACK)
56 def graySquare = new GraphicsCommand.SetColor(Color.GRAY)
57
58 def totalHits = 0
59 def possibleTargets = 0
60 def timer = new CSTimer()

Listing 14-7 Other Run Method Properties

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

208

Barriers and Buckets: Hand-Eye Co-ordination Test

The body of the run method is shown in Listing 14-8. Prior to the setUpBarrier synchronisation
{64} the displayList is initialised by a call to the set method {61} and the initial, zero, values of
totalHits and possibleHits are written to the Gallery {62, 63}.

The never ending loop of the run method is then entered {66–99}, which comprises some initialisation
prior to the goBarrier synchronisation {67–73} followed by the active part of the cycle {74–93} until
the finalBarrier is selected {89–90}.

61 displayList.set (targetGraphics)
62 hitsToGallery.write (" " + totalHits)
63 possiblesToGallery.write (" " + possibleTargets)
64 setUpBarrier.sync()
65
66 while (true) {
67 def active = true
68 def runningTargets = activeTargets.read()
69 possibleTargets = possibleTargets + runningTargets.size
70 possiblesToGallery.write (" " + possibleTargets)
71 for (t in runningTargets)
72 displayList.change (targetColour[t][0], targetColour[t][1])
73 goBarrier.sync()
74 while (active) {
75 switch (controllerAlt.priSelect()) {

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

209

Barriers and Buckets: Hand-Eye Co-ordination Test

76 case CHANGE:
77 def modification = stateChange.read() // [tId, state]
78 switch (modification[1]) {
79 case HIT:
80 displayList.change (whiteSquare, targetColour[modification[0]][1])
81 totalHits = totalHits + 1
82 hitsToGallery.write (" " + totalHits)
83 break
84 case TIMED_OUT:
85 displayList.change (graySquare, targetColour[modification[0]][1])
86 break
87 } // end switch modification
88 break
89 case BARRIER:
90 active = false
91 break
92 } // end switch controllerAlt
93 } // end of while active
94 timer.sleep(1500)
95 for (tId in runningTargets)
96 displayList.change (blackSquare, targetColour[tId][1])
97 timer.sleep (500)
98 } // end while true
99 }
100 }

Listing 14 – 8 Run Method Definition

The process DisplayController is initialised by reading the identities of the running targets into the
list runningTargets from TargetManager using the channel activeTargets {68}. The size of this
list is then used to update the total number of possible targets in the Gallery {69–70}. The members of
the list are then used to change the displayList, which cause the targets to appear in the Gallery
{71–72}. The process then synchronises on the goBarrier {73}.

The process remains active {74} until the finalBarrier is selected {89–90}. It should be noted
that the order of the guards in controllerAlt is important, with priority given to inputs from
the TargetProcesses, so that all changes to the targets are completed before the finalBarrier is
selected. While the process is active, communications from the running TargetProcesses are
read from the channel stateChange {77} which are used to modify the state of the targets in the
Gallery by changing the displayList. The input from a TargetProcess is in the form of a list
comprising the identity of the target and the state to which it should be changed. Two state changes are
possible indicated by HIT, when the target’s image is changed to white {80} and the number of targets
hit is also updated {81–82} and TIMED_OUT when the square is coloured grey {85}.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

210

Barriers and Buckets: Hand-Eye Co-ordination Test

Once the finalBarrier has been selected {89, 90} the process sleeps for 1.5 seconds {94} to allow
the user to determine the final state of that cycle. The running targets, which are now all coloured either
white or grey are returned to the colour black {95–96}. The process sleeps for a further 0.5 seconds {97},
to provide the user a break between cycles of the system. It then resumes the main loop of the process,
which is initiated by reading the identities of the targets that have been flushed from the next Bucket.

14.6 Gallery

The Gallery process shown in Listing 14-9 is similar to other user interface processes that have been
discussed previously. The only aspect of particular note is that a mouse event channel {15} is added to
the ActiveCanvas {39}. There is no need for the programmer to add anything further in terms of
listener of event handling methods. Any mouse event is communicated on the mouseEvent channel
to the MouseBuffer process. The components of the interface can be seen, by observation, to produce
that shown in Figure 14-1.

10 class Gallery implements CSProcess{
11
12 def ActiveCanvas targetCanvas
13 def ChannelInput hitsFromGallery
14 def ChannelInput possiblesFromGallery
15 def ChannelOutput mouseEvent
16 def canvasSize = 450
17
18 void run() {
19 def root = new ActiveClosingFrame ("Hand-Eye Co-ordination Test")
20 def mainFrame = root.getActiveFrame()
21 def m1 = new Label ("You Have Hit")
22 def m2 = new Label ("Out Of")
23 def hitLabel = new ActiveLabel (hitsFromGallery)
24 def possLabel = new ActiveLabel (possiblesFromGallery)
25 m1.setAlignment(Label.CENTER)
26 m2.setAlignment(Label.CENTER)
27 hitLabel.setAlignment(Label.CENTER)
28 possLabel.setAlignment(Label.CENTER)
29 m1.setFont(new Font("sans-serif", Font.BOLD, 14))
30 m2.setFont(new Font("sans-serif", Font.BOLD, 14))
31 hitLabel.setFont(new Font("sans-serif", Font.BOLD, 20))
32 possLabel.setFont(new Font("sans-serif", Font.BOLD, 20))
33 def message = new Container()
34 message.setLayout (new GridLayout (1, 4))
35 message.add (m1)
36 message.add (hitLabel)
37 message.add (m2)
38 message.add (possLabel)
39 targetCanvas.addMouseEventChannel (mouseEvent)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

211

Barriers and Buckets: Hand-Eye Co-ordination Test

40 mainFrame.setLayout(new BorderLayout())
41 targetCanvas.setSize (canvasSize, canvasSize)
42 mainFrame.add (targetCanvas, BorderLayout.CENTER)
43 mainFrame.add (message, BorderLayout.SOUTH)
44 mainFrame.pack()
45 mainFrame.setVisible (true)
46 def network = [root, targetCanvas, hitLabel, possLabel]
47 new PAR (network).run()
48 }
49 }

Listing 14-9 Gallery Process

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

212

Barriers and Buckets: Hand-Eye Co-ordination Test

14.7 Mouse Buffer

The MouseBuffer, shown in Listing 14-10 process reads mouse events on its mouseEvent channel
{12}. Only when the event is a MOUSE_PRESSED event does it store the location of the click {35}
in the variable point. At this stage it modifies {34} the pre-condition on the process’ alternative,
mouseBufferAlt so as to be able to accept requests for a point {26}, which can then be transferred to
the MouseBufferPrompt process {28}, after which the pre-condition is again modified {29} so as not
to accept further prompt requests until another mouse click point has been received. This mechanism
was used previously in the Queue and Event Handling Systems and is an idiom or pattern used
to manage requests for external non-deterministic events. In this case we note that the mouseEvent
channel is always available to read events and thus does not block the Gallery process with its implicit
threads that are used to implement events and a canvas. This is further demonstrated by the mouseEvent
channel having a data store associated with it that enables the overwriting of the oldest member of the
associated buffer (see 14.10).

10 class MouseBuffer implements CSProcess{
11
12 def ChannelInput mouseEvent
13 def ChannelInput getClick
14 def ChannelOutput sendPoint
15
16 void run() {
17 def mouseBufferAlt = new ALT ([getClick, mouseEvent])
18 def preCon = new boolean [2]
19 def EVENT = 1
20 def GET = 0
21 preCon[EVENT]= true
22 preCon[GET] = false
23 def point
24 while (true) {
25 switch (mouseBufferAlt.select(preCon)) {
26 case GET:
27 getClick.read()
28 sendPoint.write(point)
29 preCon[GET] = false
30 break
31 case EVENT:
32 def mEvent = mouseEvent.read()
33 if (mEvent.getID() == MouseEvent.MOUSE_PRESSED) {
34 preCon[GET] = true
35 point = mEvent.getPoint()
36 }
37 break
38 }
39 }
40 }
41 }

Listing 14-10 Mouse Buffer Process

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

213

Barriers and Buckets: Hand-Eye Co-ordination Test

14.8 Mouse Buffer Prompt

The MouseBufferPrompt process shown in Listing 14-11, simply writes a request to the getPoint
channel {20} and then waits to read a point on the receivePoint channel {21} which it then
writes to the TargetController process on the returnPoint channel {22}. The combination of
MouseBufferPrompt and MouseBuffer ensures that the MouseBuffer process is a pure server
in a client-server analysis and also has the effect of decoupling the generation of mouse events in the
Gallery from the process in which they are consumed, TargetController. Furthermore, any delay
in reading a point by the TargetController does not cause a delay that might cause the blocking
of the implicit event handling thread of Gallery.

10 class MouseBufferPrompt implements CSProcess{
11
12 def ChannelOutput returnPoint
13 def ChannelOutput getPoint
14 def ChannelInput receivePoint
15 def Barrier setUpBarrier
16
17 void run () {
18 setUpBarrier.sync()
19 while (true) {
20 getPoint.write(1)
21 def point = receivePoint.read()
22 returnPoint.write(point)
23 }
24 }
25 }

Listing 14-11 Mouse Buffer Prompt Process

14.9 Target Process

The TargetProcess is shown in Listings 14-12 to 14-14. The channel targetRunning {12} is used
by TargetProcess to inform the TargetManager process that it has been flushed from a Bucket
and has been made active. The channel stateToDC {13} is used to inform the DisplayController
of any change in state of this target that is, either hit or timed-out. The channel mousePoint {14} is
used to input the java.awt.Point at which the mouse has been pressed. The process is a member of
the setUp, init, go and timeAndHit barriers {15–18}. It also requires access to the array of buckets
{19}. The property targetId {20} is a unique integer identifying the instance of TargetProcess and
the values x {21} and y {22} are the pixel co-ordinates of the upper left corner of the target in the display
window. The property delay {23} specifies the minimum period for which the target will be displayed
before it times out. The target will be visible for a random time between delay and twice delay. The
method within {25–33} determines if a java.awt.Point p is within the target area. All targets are
square with a side of 100 pixels.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

214

Barriers and Buckets: Hand-Eye Co-ordination Test

10 class TargetProcess implements CSProcess {
11
12 def ChannelOutput targetRunning
13 def ChannelOutput stateToDC
14 def ChannelInput mousePoint
15 def Barrier setUpBarrier
16 def Barrier initBarrier
17 def Barrier goBarrier
18 def AltingBarrier timeAndHitBarrier
19 def buckets
20 def int targetId
21 def int x
22 def int y
23 def delay = 2000
24
25 def boolean within (Point p, int x, int y) {
26 def maxX = x + 100
27 def maxY = y + 100
28 if (p.x < x) return false
29 if (p.y < y) return false
30 if (p.x > maxX) return false
31 if (p.y > maxY) return false
32 return true
33 }
34

Listing 14-12 The Properties and Within Method of target process

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

215

Barriers and Buckets: Hand-Eye Co-ordination Test

The first part of the run method is executed during the setup phase of the system and is only executed
once, Listing 14-13. A Random number generator rng {36} is defined and then used to specify the
initial bucket, bucketId {38, 39} into which the TargetProcess will subsequently fall. Initially all
TargetProcesses will fall into a bucket in the first half of the array of buckets. A timer and some
constants are also defined {37, 40–44}.

Two alternatives are then defined. The alternative preTimeOutAlt {46} is used prior to the
TargetProcess being timed out and postTimeOutAlt {47} is used once a time out has occurred or
the target has been hit. The latter alternative includes the AltingBarrier timeAndHitBarrier. The
operation of such an AltingBarrier is straightforward. It must appear as a guard in an alternative.
Whenever any select method on the alternative is called a check is made to determine whether all the
other members of the AltingBarrier have also requested and are waiting on such a select. If they have,
then, the AltingBarrier as a whole can be selected. If one of the members of an AltingBarrier
accepts another guard in such an alternative then the AltingBarrier cannot be selected. Thus it is
possible for a process to offer an AltingBarrier guard and then withdraw from that guard if the
dynamics of the system cause that to happen.

The TargetProcess now resigns from timeAndHitBarrier {49}, which at first sight may seem
perverse. All TargetProcesses are initially enrolled on this barrier. However we only want running
targets to be counted as part of the barrier so we must first resign from the barrier and then enroll
only when the TargetProcess is executed.

The mechanism of enroll and resign can be applied to all types of barrier. A process that enrolls
on a barrier can now call the sync method (Barrier) or be a guard in an alternative and thus can be
selected (AltingBarrier). Similarly a process can resign which means that the process is no longer
part of the barrier. In the case of a Barrier resignation it also implies that if this is the last process to
synchronise on the Barrier then this is equivalent to all the processes having synchronised. A process
cannot resign if it is not enrolled. In the case of AltingBarriers this enrolment and resignation has to
be undertaken with care as no process can be running and selecting the barrier onto which it is intended
to either enrol or resign another process from. The associated documentation for JCSP specifies this
requirement more fully.

The TargetProcesses now synchronise on the setUpBarrier {50} and when this is achieved they
then fallInto the bucket with subscript bucketId {51}. This has the effect of stopping the process.
It will only be rescheduled when the TargetFlusher process causes the bucket into which the process
has fallen is flushed {Listing 14-4, 30}.

35 void run() {
36 def rng = new Random()
37 def timer = new CSTimer()

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

216

Barriers and Buckets: Hand-Eye Co-ordination Test

38 def int range = buckets.size() / 2
39 def bucketId = rng.nextInt(range)
40 def POINT= 1
41 def TIMER = 0
42 def BARRIER = 0
43 def TIMED_OUT = 0
44 def HIT = 1
45
46 def preTimeOutAlt = new ALT ([timer, mousePoint])
47 def postTimeOutAlt = new ALT ([timeAndHitBarrier, mousePoint])
48
49 timeAndHitBarrier.resign()
50 setUpBarrier.sync()
51 buckets[bucketId].fallInto()

Listing 14-13 Target process: The Setup Phase of Run

The remainder of the run method, Listing 14-14, only gets executed when the process has been flushed.
It comprises a never ending loop {52–94}, which as its final statement {93} causes itself to fall into another
bucket, prior to returning to the start of the loop. The loop itself has three phases comprising the phases
managed by initBarrier and then that managed by the goBarrier before finally running until either
the target is hit or times out which is managed by the timeAndHitBarrier.

In the initial phase, the process enrolls on the timeAndHitBarrier {53} and also the goBarrier
{54}. Enrolling on the timeAndHitBarrier causes no problem because at this stage no process
can be selecting a guard from an alternative in which timeAndHitBarrier is involved. Similarly,
enrolling on the goBarrier is an operation that can be undertaken dynamically because it is a
Barrier. The running process now writes its unique identity, targetId to its targetRunning
channel {55}. This communication means that the TargetManager now can determine {Listing 14-4,
27–30} which targets are active. It then synchronises on the initBarrier {56}. The number of running
TargetProcesses associated with the initBarrier is specified by TargetFlusher {Listing 14-3,
29} at a time when none of these processes can be running because they have yet to be flushed. Only the
running TargetProcesses are allowed to access the initBarrier and thus once the initBarrier
has synchronised we know that all the TargetProcesses are in the same state and that any dependent
processes such as DisplayController will be able to complete any further initialisation prior to the
goBarrier synchronisation. The Boolean running is initialised {57}, which will be used subsequently
to control the operation of the process. Similarly, the variable resultList is initialised {58} and will
be used to indicate the change of state that will occur in the target. The process can now synchronise
on the goBarrier by resigning from it {59}. The only permanent members of the goBarrier are
BarrierManager, TargetController and DisplayController, all of which simply call the
method sync() on the barrier . The goBarrier is augmented by the active TargetProcesses to
ensure that all the processes are in a state that will be suitable for the whole system to become active.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

217

Barriers and Buckets: Hand-Eye Co-ordination Test

Once the process has synchronised on the goBarrier it determines the time for which the target will be
displayed and sets the timer alarm {60} which is a guard in the preTimeOutAlt (46}. Prior to the alarm
occurring only two things can occur, either the TIMER alarm does happen {63} or a mouse click POINT
is received {68}. In the former case, the value TIMED_OUT can be appended to the resultList {65}
and this list can be written to the DisplayController using the channel stateToDC {66}. Otherwise,
an input can be processed {69} which, if it is within the target area {70} causes the value HIT to be
appended to the resultList {72} and as before written to the DisplayController process {73}. If
the point is not within the target then the loop repeats until one of the above cases occurs. Once this
happens the value of running is set false {64} and the loop {61–79} terminates.

The process now has take account of the case where other targets are still running; awaiting a time out or
a hit, and so mouse clicks and their associated point data will still be received by the TargetProcess.
Such point data can be ignored {87–89} and only when all the TargetProcesses are selecting the
timeAndHitBarrier, together with TargetController and BarrierManager processes can the
awaiting loop {81–91} terminate. When this occurs the process resigns from the timeAndHitBarrier
and causes the loop to exit.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

218

Barriers and Buckets: Hand-Eye Co-ordination Test

The TargetProcess can now prepare itself for falling into another bucket by calculating {92} into which
bucket it will fall and then calling the fallInto method {93}. The chosen bucket is at least two further on
than the current bucket which means that it cannot be flushed in the next iteration of TargetFlusher,
unless the next bucket happens to be empty.

52 while (true) {
53 timeAndHitBarrier.enroll()
54 goBarrier.enroll()
55 targetRunning.write(targetId)
56 initBarrier.sync() //ensures all targets have initialised
57 def running = true
58 def resultList = [targetId]
59 goBarrier.resign()
60 timer.setAlarm(timer.read() + delay + rng.nextInt(delay))
61 while (running) {
62 switch (preTimeOutAlt.priSelect()) {
63 case TIMER:
64 running = false
65 resultList << TIMED_OUT
66 stateToDC.write(resultList)
67 break
68 case POINT:
69 def point = mousePoint.read()
70 if (within(point, x, y)) {
71 running = false
72 resultList << HIT
73 stateToDC.write(resultList)
74 }
75 else {
76 }
77 break
78 }
79 } // end while running
80 def awaiting = true
81 while (awaiting) {
82 switch (postTimeOutAlt.priSelect()) {
83 case BARRIER:
84 awaiting = false
85 timeAndHitBarrier.resign()
86 break
87 case POINT:
88 mousePoint.read()
89 break
90 }
91 } // end while awaiting
92 bucketId = (bucketId + 2 + rng.nextInt(8)) % buckets.size()

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

219

Barriers and Buckets: Hand-Eye Co-ordination Test

93 buckets[bucketId].fallInto()
94 }// end while true
95 }
96 }

Listing 14-14 Target Process: The Active Phase of the Run Method

14.10 Running the System

Listing 14-15 gives the declarations of the channels, barriers and other data required to create the network
according to the process network diagrams given in Figures 14-2 to 14-6 and as such are not particularly
noteworthy apart from those described below. The Barriers are defined with the required number of
processes. Thus setUpBarrier {18} is defined with the number of targets plus five for the other
processes that use this barrier, see Figure 14-2. The initBarrier {19} is defined with no members
because only the running TargetProcesses use this barrier and the number is reset explicitly in
TargetFlusher, see Figure 14-3. Finally, the goBarrier {20} is defined has having three members,
which are the permanently attached processes as shown in Figure 14-4.

The AltingBarriers are defined as an array, with sufficient members such that every process that
access them may have a so-called ‘front-end’. The finalBarrier {23} only requires two front-ends
because only BarrierManager and DisplayController participate in this barrier. The barrier
timeAndHitBarrier {22} requires a front-end for each TargetProcess, the TargetController
and BarrierManager. Each process participating in an AltingBarrier needs to be allocated its
own front-end so that it can access the barrier during an alternative select() method call. Recall that
as a TargetProcess becomes active it specifically enrolls on the timeAndHitBarrier thereby
activating its membership of the barrier and when its turn is complete it resigns from it. Thus the
number of processes that are members of the timeAndHitBarrier is determined dynamically at run
time. The Buckets are defined by means of a create method call {25} and this could be any sensible
number to provide a wide variety of target initiations per cycle, too many buckets and we would get too
few running targets to make the challenge interesting!

10 def delay = Ask.Int("Target visible period (2000 to 3500)? ", 2000, 3500)
11
12 def targets = 16
13 def targetOrigins = [[10, 10],[120, 10],[230, 10],[340, 10],
14 [10, 120],[120, 120],[230, 120],[340, 120],
15 [10, 230],[120, 230],[230, 230],[340, 230],
16 [10, 340],[120, 340],[230, 340],[340, 340]]
17
18 def setUpBarrier = new Barrier(targets + 5)
19 def initBarrier = new Barrier()
20 def goBarrier= new Barrier(3)
21
22 def timeAndHitBarrier = AltingBarrier.create(targets+2)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

220

Barriers and Buckets: Hand-Eye Co-ordination Test

23 def finalBarrier = AltingBarrier.create(2)
24
25 def buckets = Bucket.create(targets)
26
27 def mouseEvent = Channel.one2one (new OverWriteOldestBuffer(20))
28 def requestPoint = Channel.one2one()
29 def receivePoint = Channel.one2one()
30 def pointToTC = Channel.one2one(new OverWriteOldestBuffer(1))
31
32 def targetsFlushed = Channel.one2one()
33 def flushNextBucket = Channel.one2one()
34
35 def targetsActivated = Channel.one2one()
36 def targetsActivatedToDC = Channel.one2one()
37 def getActiveTargets = Channel.one2one()
38
39 def hitsToGallery = Channel.one2one()
40 def possiblesToGallery = Channel.one2one()
41
42 def targetIdToManager = Channel.any2one()
43 def targetStateToDC = Channel.any2one()
44
45 def mousePointToTP = Channel.one2oneArray(targets)

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

221

Barriers and Buckets: Hand-Eye Co-ordination Test

46 def mousePoints = new ChannelOutputList (mousePointToTP)
47
48 def imageList = new DisplayList()
49 def targetCanvas = new ActiveCanvas ()
50 targetCanvas.setPaintable (imageList)
51

Listing 14-15 Running the System Property Definitions

The mouseEvent channel {27} must be defined with a data store of type OverWriteOldestBuffer
so that the event handling thread associated with the user interface does not block; see the JCSP
documentation for ActiveCanvas. Similarly the pointToTC channel also uses a one place
OverWriteOldestBuffer {30} so that if mouse clicks are received too quickly the system does not
block. Given the normal performance of a PC this is very unlikely to occur as the user time to move
the mouse to another target is relatively long.

The channels that connect TargetController to the TargetProcesses are defined as an array,
mousePointToTP {45}, the input end of which is passed directly to the TargetProcess. The output
ends are formed into a ChannelOutputList, mousePoints {46}, so that they can be written to in
parallel by a write method call by TargetController.

The DisplayList and ActiveCanvas components are defined {48–50} prior to being passed as
properties of the required processes.

Listing 14-16 shows the definition of the TargetProcesses and also of BarrierManager. The
other processes can be found in the accompanying software because they are very similar to the
definition of processes in other systems. It is a matter of tying together the property definition in
the process and the defined variable in the script that causes the system to execute. The barriers are
straightforward but the allocation of a timeAndHitBarrier requires that a specific front-end is
allocated to each TargetProcess {60} and also to BarrierManager {70}. The origin co-ordinates
of each TargetProcess {63, 64} for the associated display is obtained from the list targetOrigins.

52 def targetList = (0 ..< targets).collect { i ->
53 return new TargetProcess (
54 targetRunning: targetIdToManager.out(),
55 stateToDC: targetStateToDC.out(),
56 mousePoint: mousePointToTP[i].in(),
57 setUpBarrier: setUpBarrier,
58 initBarrier: initBarrier,
59 goBarrier: goBarrier,
60 timeAndHitBarrier: timeAndHitBarrier[i],
61 buckets: buckets,
62 targetId: i,

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

222

Barriers and Buckets: Hand-Eye Co-ordination Test

63 x: targetOrigins[i][0],
64 y: targetOrigins[i][1],
65 delay: delay
66)
67 }
68
69 def barrierManager = new BarrierManager (
70 timeAndHitBarrier: timeAndHitBarrier[targets],
71 finalBarrier: finalBarrier[0] ,
72 goBarrier: goBarrier,
73 setUpBarrier: setUpBarrier
74)
75

Listing 14-16 Decalring the TargetProcesses and BarrierManager

14.11 Summary

This chapter has introduced the concepts of buckets and barriers as a means of providing synchronisation
between processes that are executing on a single processor within a single JVM. It has been shown how
an AltingBarrier can be used to manage highly dynamic situations and to provide a high-level control
mechanism to manage complex interactions. A description of the implementation mechanism underlying
AltingBarrier is to be found in (Welch, et al., 2007) and a different use of AltingBarrier using a
syntactically different but conceptually identical formulation is to be found in (Ritson & Welch, 2007)

http://bookboon.com/

